

Real-Time Monitoring of Pore-Forming Toxin Activity in Live Cells Using High-Throughput Impedance Assays

A.-S. Kittel^{1,2}; T. Ensslen³; M. Ziller⁴; S. Stölzle-Feix⁴; N. Fertig⁴; J. C. Behrends^{3,5} and W. Römer^{1,2}

- ¹ Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- ² Faculty of Biology, University of Freiburg, Freiburg, Germany
- ³ Hahn-Schickard Institute for Microanalysis Systems e.V. Freiburg, Germany
- ⁴ Nanion Technologies GmbH, Munich, Germany
- ⁵ Department of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany anna-sophia.kittel@bioss.uni-freiburg.de

Pore-forming toxins (PFTs) are major virulence factors in many pathogens, disrupting cell membrane integrity and causing cell death. Beyond their pathogenic role, they can be harnessed for single-molecule sensing, where they are known as biological nanopores. Their capacity to kill cells by pore formation - sometimes involving specific receptors - also offers promising therapeutic potential, particularly in cancer treatment [1, 2]. However, for many PFTs, the detailed dynamics of action are often not completely understood.

In this study, we applied a high-throughput, label-free impedance assay to investigate the kinetics and cellular effects of two PFTs: SaroL-1 from *Salpingoeca rosetta* [3] and Aerolysin from *Aeromonas hydrophila* [4, 5]. Using cancer cell monolayers, we monitored real-time changes in electrical impedance to assess membrane disruption, cell adhesion, barrier function, and overall cellular health in both H1299 and HT-29 carcinoma cells. The method enabled us to differentiate between fast and delayed toxin activities, providing kinetic profiles of toxin action. Additionally, we examined the receptor specificity of SaroL-1 and Aerolysin towards the glycosphingolipid Gb3 by using Gb3-depleted cells and a specific inhibitor. The AtlaZ impedance platform enabled automated, scalable experiments, demonstrating its utility for screening neutralizing agents and elucidating dose-dependent PFT mechanisms. Our findings highlight impedance sensing as a powerful tool for real-time analysis of PFT-induced cytotoxicity and receptor dependency.

References:

- [1] Y. Zhang and C. Cao, "Aerolysin Nanopores for Single-Molecule Analysis," *Chimia (Aarau)*, vol. 79, no. 1–2, pp. 18–24, Feb. 2025, doi: 10.2533/chimia.2025.18.
- [2] F. Piguet *et al.*, "Pore-forming toxins as tools for polymer analytics: From sizing to sequencing," *Methods Enzymol*, vol. 649, pp. 587–634, 2021, doi: 10.1016/bs.mie.2021.01.017.
- [3] S. Notova *et al.*, "The choanoflagellate pore-forming lectin SaroL-1 punches holes in cancer cells by targeting the tumor-related glycosphingolipid Gb3," *Commun Biol*, vol. 5, no. 1, p. 954, Sep. 2022, doi: 10.1038/s42003-022-03869-w.
- [4] I. Iacovache, S. De Carlo, N. Cirauqui, M. Dal Peraro, F. G. van der Goot, and B. Zuber, "Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process," *Nat Commun*, vol. 7, p. 12062, Jul. 2016, doi: 10.1038/ncomms12062.
- [5] T. Ensslen *et al.*, "BPS2025 Quantitative and mechanistic analysis of protein membrane pore formation on a high-throughput electrophysiology platform," *Biophysical Journal*, vol. 124, no. 3, p. 400a, Feb. 2025, doi: 10.1016/j.bpj.2024.11.2155.